US009485188B2

a2 United States Patent

Birke et al.

(10) Patent No.:
45) Date of Patent:

US 9,485,188 B2
Nov. 1, 2016

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

VIRTUAL SWITCHING BASED FLOW
CONTROL

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)
Inventors: Robert Birke, Kilchberg (CH); Daniel
Crisan, Zug (CH); Casimer M.
DeCusatis, Poughkeepsie, NY (US);
Mircea Gusat, Langnau (CH); Keshav
G. Kamble, Fremont, CA (US); Cyriel
J. Minkenberg, Gutenswil (CH)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 84 days.

Appl. No.: 13/757,612

Filed: Feb. 1, 2013

Prior Publication Data

US 2014/0219287 Al Aug. 7, 2014

Int. CL.

HO4L 12/863 (2013.01)

HO4L 12/801 (2013.01)

HO4L 12/835 (2013.01)

HO4L 12/931 (2013.01)

U.S. CL

CPC HO4L 47/621 (2013.01); HO4L 47/29

(2013.01); HO4L 47/30 (2013.01); HO4L 49/00
(2013.01)
Field of Classification Search

CPC ... HO4L, 47/00; HO4L 47/12; HO4L 47/29;
HO4L, 47/30; HO4L 47/621; HO4L 49/901
USPC ... 370/235, 412, 389, 230, 388, 244, 225,

370/229, 351, 354, 392, 232, 236
See application file for complete search history.

(56)

References Cited

U.S. PATENT DOCUMENTS

5,138,615 A *

6,408,005

7,433,305
7,593,329

8,018,849

8,174,984 B2
2003/0152096

2006/0018329
2007/0011362
2011/0035494

2011/0103389
2012/0016973

2013/0051235
2013/0151750

2014/0115578

* cited by examiner

BL*

B2 *
B2 *

BL*

Al*
Al*
Al*
Al*

Al*
Al*

Al*
Al*

Al*

8/1992 Lamport HO04L 45/02
370/400
6/2002 Fancccons HO4L 12/5602
370/412
10/2008 Hansson et al. 370/229
9/2009 Kwan HO4L 12/5693
370/230
9/2011 Wentzlaff GOGF 15/17337
326/41

5/2012 Tripathi et al.
8/2003 Chapman HO4L 12/5695
370/412
1/2006 Nielsenc........ HO04L 47/52
370/401
1/2007 Umekage GOGF 3/1208
710/15
2/2011 Pandey GOGF 9/5077
709/224
5/2011 Kidambi et al. 370/395.1
1/2012 Harisccoeoevaee. HO4L 12/5696
709/220
2/2013 Songetal.cccecenne 370/235
6/2013 Kanigicherla GOGF 13/4022
710/313
4/2014 Cooperc..... GOGF 21/606
718/1

Primary Examiner — Habte Mered
Assistant Examiner — Rownak Islam
(74) Attorney, Agent, or Firm — Shimokaji IP

&7

ABSTRACT

Flow control of data packets in a network may be enabled to
at least one side of a virtual switching interface to provide
a lossless environment. In some embodiments, wherever two
buffer queues are in communication with at least one buffer
queue being connected to a virtual switching interface, flow
control may be used to determine if a threshold has been
exceeded in one of the buffer queues. When exceeded, the
transmission of data packets may cease to one of the buffer
queues to prevent packet dropping and loss of data.

15 Claims, 5 Drawing Sheets

RXFLOW CONTROL THRESHOLDS TX FLOW CONTROL THRESHOLDS
m 15 L0} PR N BLFFER .10} PEROUTQLELE
125
MmN eyl ij/-wss i
)
PR i \ i WL
7 e -)
15 N ouTO2 | 4
2 1 VIRTUAL SWITCH &
ALLOCATOR/ SCHEDULER
PRODUCER . FORWARBING (WD) *
PUSH o || P Al e
L] L]
)»N 15 |~150 160~ 127 12
INPUT i /|-|-|-|-|-| \
o : INTERNAL FLOW CONTROL SIGNALS o

INPUT BUFFERSIQUEUES

OUTPUT BUFFERS/QUEUES

100

w2

o

120

CONSUMER
PULL

U.S. Patent Nov. 1, 2016 Sheet 1 of 5 US 9,485,188 B2

2
/I
30 MEMORY y
RAM =
16 .| STORAGE
\ CACHE |- SYSTEM
PROCESSING \
UNIT 3 0"
24 A »
\ 18-¥ gh 42
DISPLAY feb—»] O
INTERFACE(S) N2 Y
I 20—| NETWORKADAPTER

A

EXTERNAL
14="] DEVICE(S)

FIG. 1

US 9,485,188 B2

Sheet 2 of 5

Nov. 1, 2016

U.S. Patent

TINnd
gINNSNOD

0ch

Nvi

Al

001

$3N3N0/SY344NG LNdLNO $3N3N0/SHIAANG LNdN|
— ||||||||||||||||||||||||||
) 0100 STYNDIS T0HLNOD MO TYNREILN | EEH:.u--.E@.\%v.o.l.a.ﬁ
) _/) _‘\ [LN "
Bl T Y 051 "] e
® []
. o N ST °
N ! I@DQ
(OMd) ONIGEvMYOA
° MTINAIHIS T HOLYOOTTY * £3JMc0dd
HOLIMS YN LYIA I
Nmm_ NO 1n0 e ..\ /, |||||| Nw:
X —INg \ _E@“ ainan |
lo1no i}
T 7T EE .\EE“ e
& - o N

N3N0 LNO ¥3d {071}
SATOHSTHHL TOMINOI MOTH XL

Y
¥344NG NI ¥3d {07 H)
SATOHSTHHL TOMLNOI MO

X4

US 9,485,188 B2

Sheet 3 of 5

Nov. 1, 2016

U.S. Patent

g

andL

102

/

g 1qon
3104 LOOA

(330)

Jdh

4

3

L4vLS

aNnssl

40¢

¢ 9ld
059~ lo3ananona
I 3n3N03C
gm I57v4
= 74
g Laon
819 109h Iyl
(330) 94dA
I i~y
N '03n3nN0 |
1NdLN0 dNX007T
17>
d01S3NSS| =
/
062 - 67 aMd
~N !
| 3N3NON3 =
! 0z Y Y
002 N NdNHoA L OO

U.S. Patent

Y

Nov. 1, 2016 Sheet 4 of 5 US 9,485,188 B2
’g)o
WAIT FOR INPUT =310
PULL
Y
DEQUEUE OJ \320
3/40
330
TRUE WAKE UP FWD
FALSE
CONSUME PKT \350

FIG. 4

U.S. Patent Nov. 1, 2016 Sheet 5 of 5 US 9,485,188 B2

405 400

401 »%DJPLCATON) 401 V/

RETTRY

N Wi ¢ AN BRLCNOON e

BUESTKERNEL L ST RECENE___ 475
(3R

GUESTKERNEL SOCETRX
0~ ENQUEUE [ﬁ BUFFER]/ ~
. PAUSE/RESUME] T 76l ecere 40
START/STOP Satmit 30| | |_RECERTION I T
AT QEE NCTX ~~45) {8 WCRX
412 LEUE
VERTSR. P 3 QURLE ~
M REIRN | FRECENE 475 SEND SN >475 445
bl i
40~ VWTCH
s HED)| FO&(\JI\;{ATRE] (WAE-1P) ﬁFOF%%RE <455
125~ =H ’
BRIOGE RAQUELE BRDGE 5 TAQUEE > ~ 460
430~JPHYSICAL > gTXQUEUE | PHYSICAL —L RXQUELE [
NC RECENE| “TERD NG 520 | FREETE g
PALSE | | FRAIE PAUSE | | FRAE
\] A
435~ PHYSICAL PYSICAL
N K™ 435

FIG. 5

US 9,485,188 B2

1
VIRTUAL SWITCHING BASED FLOW
CONTROL

BACKGROUND

The present invention relates to data networking, and
more specifically, to virtual switching based flow control.

Packet loss in data networks is a well known cause of poor
performance in networking systems. Typically, physical
switches are incorporated with measures to minimize packet
loss. Ideally, a physical network seeks to operate in a lossless
environment.

However, lossless environments in virtual switch net-
works may be a more difficult task. Typically, virtual com-
ponents may operate entirely within a single switch or server
and or in some cases may span over multiple physical
machines. In some cases, where the physical network
machine has incorporated measures to provide a lossless
environment, the virtual machine(s) communicating with the
physical machine may not understand the controlling soft-
ware. Accordingly, the physical machine may reject inter-
facing with a virtual machine that is attempting to transfer
data packets through the physical machine.

Thus it may be seen that a virtual networking environment
may benefit from the implementation of data flow control
that may be compatible with a physical networking envi-
ronment.

SUMMARY

According to an exemplary embodiment of the present
invention, a computer program product for controlling data
traffic in a network with a virtual switch, the computer
program product comprises a computer readable storage
medium having program code embodied therewith. The
program code may be readable/executable by a processor to:
determine, by the processor, that a data packet is designated
for queuing up in a buffer queue connected to a virtual
switching entity; determine, by the processor, whether a
threshold in the buffer queue is exceeded; and control, by the
processor, the flow of the data packet to or from the virtual
switching entity based on the determination of the threshold
in the buffer queue being exceeded.

According to another exemplary embodiment of the pres-
ent invention, a system comprises a first switching interface.
A first buffering area may be connected to the first switching
interface. A second switching interface may be configured
for virtual switching in a data network. A second buffering
area may be connected to the first buffering area and to the
second switching interface. A processor may be configured
to control a flow of data packets between the first buffering
area and the second buffering area based on whether a
threshold in the second buffering area is exceeded.

According to yet another embodiment of the present
invention, a method of controlling data packet flow in a
network with at least one virtual switching entity comprises
receiving a data packet either with a source address from the
virtual switching entity or designated with a destination
address to the virtual switching entity. It may be determined
whether the data packet is designated for queuing in a first
buffer queue. The data packet may be queued in the first
buffer queue. It may be determined whether a threshold of
the first buffer queue has been exceeded. A flow of more data
packets either with a source address from the virtual switch-
ing entity or with a destination address to the virtual switch-
ing entity, to the first buffer queue may be controlled if the
threshold has been exceeded.

10

15

20

25

30

35

40

45

50

55

60

65

2

According to yet another embodiment of the present
invention, a method for building a lossless data transfer
environment in a virtualized network comprises generating
flow control commands between hardware and software
elements in the virtualized network; and receiving the flow
control commands, without packet loss or packet drops, at
either the hardware or software elements in the virtualized
network.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a computer system according to an embodi-
ment of the present invention.

FIG. 2 depicts a data communication system according to
an embodiment of the present invention.

FIG. 3 depicts a method of controlling an input side of
data traffic within a network with a virtual switch according
to another embodiment of the present invention.

FIG. 4 depicts a method of controlling an output side of
data traffic within a network with a virtual switch according
to another embodiment of the present invention.

FIG. 5 depicts a block diagram of a packet path within a
virtual machine according to another embodiment of the
present invention.

DETAILED DESCRIPTION

In general, embodiments of the subject disclosure may
provide flow control of data packets wherever two queues in
a virtual network are in communication with one another.
More particularly, embodiments of the subject disclosure
may control packet flow using software defined networking
(SDN) between any input buffer and output buffer within a
network using virtual switching to provide a lossless envi-
ronment in data transfer. An exemplary embodiment may
include a lossless Distributed Overlay Virtual Ethernet
(DOVE) SDN program for CEE networks with a vPFC
interface. In an alternate embodiment, credit based flow
control signals from an external source may be used to
interface with hardware using a PCI express (PCle) or an
Infiniband interface.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or process, or computer program product. Accordingly,
aspects of the present invention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a
“circuit,” “module,” or “system.” Furthermore, aspects of
the present invention may take the form of a computer
program product embodied in one or more computer read-
able storage media having computer readable program code
embodied thereon.

Any combination of one or more computer readable
storage media may be utilized. A computer readable storage
medium is an electronic, magnetic, optical, or semiconduc-
tor system, apparatus, or device, or any suitable combination
of the foregoing. More specific examples (a non-exhaustive
list) of the computer readable storage medium would include
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a portable compact disc read-
only memory (CD-ROM), an optical storage device, a
magnetic storage device, or any suitable combination of the
foregoing. In the context of this document, a computer

US 9,485,188 B2

3

readable storage medium is any tangible medium that can
store a program for use by or in connection with an instruc-
tion execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, may be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer readable storage medium that can direct a
computer, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable storage medium
produce an article of manufacture including instructions
which implement the function/act specified in the flowchart
and/or block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus may provide

15

25

30

40

45

60

4

processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

Referring now to FIG. 1, a schematic of a computing
system 10 is shown. The computing system 10 illustrated is
only one example of a suitable cloud computing node and is
not intended to suggest any limitation as to the scope of use
or functionality of embodiments of the invention described
herein. Regardless, the computing system 10 is capable of
being implemented and/or performing any of the function-
ality set forth herein.

The computing system 10 may be operational with
numerous other general purpose or special purpose comput-
ing system environments or configurations. Examples of
well-known computing systems, environments, and/or con-
figurations that may be suitable for use as the computing
system 10 may include, but are not limited to, personal
computer systems, server computer systems, thin clients,
thick clients, handheld or laptop devices, multiprocessor
systems, microprocessor-based systems, set top boxes, pro-
grammable consumer electronics, network PCs, minicom-
puter systems, mainframe computer systems, and distributed
cloud computing environments that include any of the above
systems or devices, and the like.

The computing system 10 may be described in the general
context of computer system executable instructions, such as
program modules, being executed by a computer system.
Generally, program modules may include routines, pro-
grams, objects, components, logic, data structures, and so on
that perform particular tasks or implement particular abstract
data types. The computing system 10 may be practiced in
distributed cloud computing environments where tasks are
performed by remote processing devices that are linked
through a communications network. In a distributed cloud
computing environment, program modules may be located
in both local and remote computer system storage media
including memory storage devices.

As shown in FIG. 1, the computing system 10 is shown in
the form of a general-purpose computing device. The com-
ponents of the computing system 10 may include, but are not
limited to, one or more processors or processing units 16, a
system memory 28, and a bus 18 that couples various system
components including the system memory 28 to the proces-
sor 16.

The bus 18 represents one or more of any of several types
of bus structures, including a memory bus or memory
controller, a peripheral bus, an accelerated graphics port, and
a processor or local bus using any of a variety of bus
architectures. By way of example, and not limitation, such
architectures may include Industry Standard Architecture
(ISA) bus, Micro Channel Architecture (MCA) bus,
Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component
Interconnects (PCI) bus.

The computing system 10 may typically include a variety
of computer system readable media. Such media could be
chosen from any available media that is accessible by
computing system 10, including volatile and non-volatile
media, removable and non-removable media.

The system memory 28 could include one or more com-
puter system readable media in the form of volatile memory,
such as a random access memory (RAM) 30 and/or a cache
memory 32. The computing system 10 may further include
other removable/non-removable, volatile/non-volatile com-
puter system storage media. By way of example only, a
storage system 34 may be provided for reading from and
writing to a non-removable, non-volatile magnetic media
device typically called a “hard drive” (not shown). Although

US 9,485,188 B2

5

not shown, a magnetic disk drive for reading from and
writing to a removable, non-volatile magnetic disk (e.g., a
“floppy disk™), and an optical disk drive for reading from or
writing to a removable, non-volatile optical disk such as a
CD-ROM, DVD-ROM or other optical media could be
provided. The storage system 34 may also include other
forms of storage media such as flash memory for example.
In such instances, each computer system storage media may
be connected to the bus 18 by one or more data media
interfaces. As will be further depicted and described below,
the system memory 28 may include at least one program
product having a set (e.g., at least one) of program modules
that are configured to carry out the functions of embodi-
ments of the invention.

A program/utility 40, having a set (at least one) of
program modules 42, may be stored in the system memory
28 by way of example, and not limitation, as well as an
operating system, one or more application programs, other
program modules, and program data. Each of the operating
system, one or more application programs, other program
modules, and program data or some combination thereof,
may include an implementation of a networking environ-
ment. The program modules 42 generally carry out the
functions and/or methodologies of embodiments of the
invention as described herein.

The computing system 10 may also communicate with
one or more external devices 14 such as a keyboard, a
pointing device, a display 24, etc.; one or more devices that
enable a user to interact with the computing system 10;
and/or any devices (e.g., network card, modem, etc.) that
enable the computing system 10 to communicate with one or
more other computing devices. Such communication can
occur via Input/Output (I/O) interfaces 22. Alternatively, the
computing system 10 can communicate with one or more
networks such as a local area network (LAN), a general wide
area network (WAN), and/or a public network (e.g., the
Internet) via a network adapter 20. As depicted, the network
adapter 20 may communicate with the other components of
the computing system 10 via the bus 18. It should be
understood that although not shown, other hardware and/or
software components could be used in conjunction with the
computing system 10. Examples include, but are not limited
to: microcode, device drivers, redundant processing units,
external disk drive arrays, RAID systems, tape drives, and
data archival storage systems, etc.

Referring now to FIG. 2, a data communication system
100 is shown according to an exemplary embodiment of the
present invention. The data communication system may also
be referred to as the system 100. In general, the system 100
may be configured to provide a lossless data packet transfer
environment by reacting to, responding to, and generating
standard flow control signals. The flow control signals may
be for example, priority-based flow control (PFC), PCI
Express (PCle) and Infiniband (IB) credits. In some embodi-
ments, the flow control signals may be On/Off grants, rate
increase/decrease signals, or S-PFC signals. The system 100
may use the flow control signals to transmit or receive
packets without packet losses or drops between physical and
virtual networks, and any combination thereof.

In an exemplary embodiment, the system 100 is part of a
virtual switching environment. The system 100 may repre-
sent any switching interface between two buffering entities
that are exchanging data packets. For example, the system
100 may include a data packet producer 110 exchanging data
packets with a data packet consumer 120. The data packet
producer 110 is the transmitting side of the system 100 while
the data packet consumer 120 is the receiving side. In an

10

20

25

30

35

40

45

50

55

60

65

6

exemplary embodiment, at least one side (either the data
packet producer 110 or the data packet consumer 120) of the
system 100 is a virtual entity (for example, virtual switches,
virtual machines, hypervisors, virtual network interface
cards (VNICs), etc.). The interface between the producer 110
and the consumer 120 may be between two entirely virtual
entities. In some embodiments, the producer 110 or the
consumer 120 may be a virtual switching entity while the
other may be a physical switching entity (for example, a
physical network switch or NIC).

The system 100 may be configured to provide flow
control of data packets exchanged between the data packet
producer 110 and the data packet consumer 120. The flow
control of input data packet streams (115, 115, . . . 115)
(referred to collectively as input streams 115) and output
data packet streams (125,, 125, . . . 125) (referred to
collectively as output streams 125) may be controlled for
example, by the program 40 (FIG. 1). The program 40 may
include SDN controller stored in either hardware or software
elements of the system 100. The SDN controller may
generate flow control commands and react to flow control
between the hardware and software elements. The program
40 may control for example, the processor 16 (FIG. 1) or any
networking element for which the system 100 is imple-
mented into to implement any of the following functions or
steps. The program 40 may allocate an input buffer area 150
to the data packet producer 110. The input buffer area 150
may include an input buffer queue 117 dedicated to each
input stream 115. Each input buffer queue 117 may be
configured to store a plurality of data packets 155. While
each input buffer queue 117 shows five data packets 155, it
will be understood that typically there is room for more
packets within a queue 117. For each input buffer queue 117
the program 40 may designate thresholds for the number of
data packets 155 in the input buffer queue 117 that may
trigger an action by the processor 16.

The program 40 may allocate an output buffer area 160 to
the data packet consumer 120. The output area buffer 160
may include an output buffer queue 127 for each output
stream 125. The output buffer queues 127 may be configured
to receive data packets 155 provided from the input data
streams 115 as allocated by a forwarding engine 140. The
forwarding engine 140 may be configured to handle func-
tions such as virtual switching allocation of data packets
through the system 100 and scheduling/forwarding of data
packets through the system 100. For each output buffer
queue 127 the program 40 may designate thresholds for the
number of data packets 155 in the output buffer queue 127
that may trigger an action by the processor 16.

In an exemplary embodiment, the program 40 may be
configured to control the flow of data packets 155 into the
input buffer queues 117 and/or into the output buffer queues
127 to prevent packet loss. In some embodiments, the data
packet 155 may enter either the input buffer queue 117 or the
output buffer queue 127 through a switching device, for
example a virtual switch or a hypervisor. In some embodi-
ments, the data packet 155 may bypass the switching device
en route to the output buffer queue 127. The program 40 may
determine if a threshold for a maximum number of data
packets 155 in the output buffer queue 127 before receiving
more packets has been reached. The threshold for the
maximum number of data packets 155 is not necessarily the
entire room available in the output buffer queue 127. When
the threshold for a maximum number of data packets 155 is
reached, the processor 16 may send a command to stop the
input data streams 115 from communicating more data
packets 155 into one or more of the input buffer queues 117.

US 9,485,188 B2

7

Internal flow control signals may be exchanged between the
output buffer queues 127 and the input buffer queues 117
signaling when the output buffer queues 117 release enough
data packets 155 reaching a threshold signaling room for
receipt of new data packets 155. Also for example, the
program 140 may stop the data packet producer 110 from
sending more data packets 155 when the input buffer queues
117 have reached a threshold for a maximum number of data
packets 155 in the input buffer queue 117.

Thus, with flow control opportunities present at two
buffering locations of a virtual switching interface (the input
and output sides), a lossless environment may be achieved
even in a virtual networking environment. This may provide
compatibility with physical networking machines since the
interfaces to the buffers may appear to resemble the buft-
ering constraints of a physical buffer space. The compat-
ibility may protect the internal networking interfaces
between hardware and software components, for example,
by offloading networking capacity from the physical
machines to the virtual machines without fear of packet loss.
For example, point to point flow control in a virtualized
network employing embodiments of the present invention
may be realized in otherwise incompatible interfaces.

S/W Producer—S/W Consumer

In some interfaces, the data packet producer 110 is
software based and transmitting to software based consumer
120. The data packet producer 110 and the consumer 120
may be from different vendors or have incompatible appli-
cation programming interfaces (APIs). To bridge the incom-
patibility, an On/Off flow control loop synchronized via an
externally visible packet or signal may be used by the system
100 to control packet flow as described above. The signal
types may include for example, Converged Enhanced Eth-
ernet (CEE) PFC frame (vPFC) (incl. S-PFC etc.) in CEE
networks; PCle flow control credit (vCDT_PCle) in PCle
interfaces including SR-IOV (Single Rooted 1/O Virtualiza-
tion) and MR-IOV (Multi-Rooted I/O Virtualization) offload
environments; and Infiniband flow control credit
(vCDT_IB) for Infiniband interfaces.

H/W Producer—S/W Consumer

In some interfaces, the data packet producer 110 is
hardware based and transmitting to software based con-
sumer 120. The data packet producer 110 and the consumer
120 may be from different vendors or have incompatible
application programming interfaces (APIs). To bridge the
incompatibility, an On/Off flow control loop synchronized
via an externally visible packet or signal may be used by the
system 100 to control packet flow as described above. The
signal types may include for example, Converged Enhanced
Ethernet (CEE) PFC frame (vPFC) (incl. S-PFC etc.) in CEE
networks; PCle flow control credit (vCDT_PCle) in PCle
interfaces including SR-IOV (Single Rooted 1/O Virtualiza-
tion) and MR-IOV (Multi-Rooted I/O Virtualization) offload
environments; and Infiniband flow control credit
(vCDT_IB) for Infiniband interfaces.

S/W Producer—H/W Consumer

In some interfaces, the data packet producer 110 is
software based and transmitting to hardware based con-
sumer 120. The data packet producer 110 and the consumer
120 may be from different vendors or have incompatible
application programming interfaces (APIs). To bridge the
incompatibility, an On/Off flow control loop synchronized
via an externally visible packet or signal may be used by the
system 100 to control packet flow as described above. The
signal types may include for example, Converged Enhanced
Ethernet (CEE) PFC frame (vPFC) (incl. S-PFC etc.) in CEE
networks; PCle flow control credit (vCDT_PCle) in PCle

5

10

15

20

25

30

35

40

45

50

55

60

8
interfaces including SR-IOV (Single Rooted 1/O Virtualiza-
tion) and MR-IOV (Multi-Rooted I/O Virtualization) offload
environments; and Infiniband flow control credit
(vCDT_IB) for Infiniband interfaces.

Details of the input side buffer control and output side
buffer control are described according to the following
descriptions of flow charts.

Referring now to FIG. 3, a method 200 of controlling an
input side of data traffic within a network with a virtual
switch is shown according to an exemplary embodiment of
the present invention. In some embodiments, the processor
may receive 201, a flow control signal from an external
source. The flow control signal may be for example, a
buffering credit (for example, PCle flow control credit or
Infiniband flow control credit. In other embodiments, the
flow control signal may be internal. The flow control signal
may be from either the producing or consuming side of a
data packet interface. The receipt of a flow control signal
may cause the processor to issue 205 a start command to
process data packets in a data exchange between an input
buffer (I,) queue and an output buffer (O,) queue. In an
exemplary embodiment, a virtual switching entity may be
connected to either the input buffer queue or the output
buffer queue. Accordingly, the data packet may be received
with a source address from a virtual switching entity or may
be designated with a destination address to a virtual switch-
ing entity. The processor may wait 210 for receipt of a data
packet from a virtual switching entity. The processor may
determine 215 the type of data packet received. The data
packet may be one designated for queuing in an input buffer
queue or may be one designated for forwarding to the output
buffer queue. Data packets marked as incoming from a
producer may be designated 220 for queue in the input buffer
queue. The processor may determine 225 whether the stor-
age in the input buffer queue is more than the threshold for
a maximum number of data packets in the input buffer
queue. If the threshold has been exceeded, then the proces-
sor may issue 230 a stop command to the producer to stop
sending further data packets. If the threshold for a maximum
number of data packets in the input buffer queue has not
been exceeded or if the stop command has issued, then the
processor may check 240 the status of the output buffer
queue for room to receive data packets. Also, if in step 215,
the data packet was marked for forwarding to the output
buffer queue, then the processor may proceed directly to
checking 240 the status of the output buffer queue. The
processor may determine 245 whether the storage in the
output buffer queue is more than the threshold for a maxi-
mum number of data packets in the output buffer queuve. If
the threshold has been exceeded, then the data packet may
cycle through the method 200 until the processor determines
245 that the threshold is not exceeded or packets from that
queue have been dequeued which creates an opportunity to
enqueue more packets. When the output buffer queue stor-
age is below the threshold, the processor may remove 250
the data packet from the input buffer queue and may queue
up the data packet for the output buffer queue. The processor
may determine 255 whether the input buffer queue storage
is below the threshold signaling room for receipt of new data
packets. If the input buffer queue storage is above the
threshold signaling room for receipt of new data packets,
then the processor may cycle through the method 200 until
the processor determines 255 that the input buffer may have
room to receive new packets. If the input buffer queue is
receiving new data packets then the processor may return to
step 205.

US 9,485,188 B2

9

Referring now to FIG. 4, a method 300 of controlling an
output side of data traffic in a network with a virtual switch
is shown according to an exemplary embodiment of the
present invention. The processor may wait for receipt 310 of
a data packet designated for output through the output buffer
queue. The processor may de-queue 320 the data packet, i.e.,
release the data packet from the output buffer queuve. The
processor may determine 330 whether the output buffer
queue storage is below the threshold signaling room for
receipt of new data packets. If the output buffer queue
storage is below the threshold, then the processor may issue
a command to wake up a forwarding function in the con-
troller 140 and restart sending of data packets from the input
buffer queue. After the wake up command or if the output
buffer storage is higher than the threshold signaling room for
receipt of new data packets, then the processor may direct
the system to consume 350 the data packet (send the packet
to its destination). In an exemplary embodiment, the pack-
et’s destination may be a virtual switching entity or a virtual
machine (VM) hosted on the same virtualization platform.
The processor may then wait for receipt 310 of the next data
packet.

Referring now to FIG. 5, the transmission and reception
path scheme 400 between queues 475 in a virtual machine
401 is shown. Assuming a collection of virtualized servers
each running a set of virtual machines, the servers may be
interconnected through a flat L2 fabric. The physical net-
work may have per-priority flow control allowing the net-
work administrator to configure one or more priorities as
lossless. Without loss of generation, a single lossless priority
may be used. The physical per-priority flow control may be
continued into the virtual domain by hypervisor software
implementing embodiments of the present invention as
described above.

The data packets may travel between processes (applica-
tions) 405 running inside the VMs 401. The packets may
move from one queue 475 to another queue 475 within
different software and hardware components. The details of
this queueing system are described with emphasis on the
flow control mechanisms between each interfacing queue
475 pair. The packet transmission and reception paths are
shown in FIG. 5.

After processing within the VM’s guest kernel 410 the
packets may be transferred to the hypervisor 415 through a
virtual adapter (vNIC) 412. The hypervisor 415 may send
the packets to the virtual switch 420. The virtual switch 420
assures the communication between VMs 401 and the physi-
cal adapter 430. The packets that have as destination
addresses remote VMs (not shown) may be taken over by a
bridge 425 that encapsulates them and moves them to the
physical adapter 435 queues. The packets may travel
through the physical network (represented as physical link
435) and may be delivered to the destination server where
they may be taken over by the bridge 460 that decapsulates
them and moves them into the destination’s virtual switch
455. The virtual switch 455 does the forwarding and the
packets may be received by the hypervisor 445 that forwards
them to the guest kernel 440. After processing in the guest
kernel 440 the packets may be delivered to the application
495. The loss points 450 (where data packets are dropped or
lost) are labeled as “wake-up” and “pause/resume recep-
tion”.

On the transmit side the packets may be generated by the
user space processes. The process may issue a send system
call that copies the packet from user space to the guest kernel
space 410. After the copy the packets may be stored in a
sk_buff data structure that is enqueued in the TX buffer of

40

45

50

55

10

the socket opened by the application 405. The application
may be aware if the TX queue is full through the return value
of the system call making this operation lossless. The
packets from the socket TX buffer are enqueued in the Qdisc
associated with the virtual interface. The Qdisc may stores
a list of pointer to the packets belonging to each socket. The
pointers may be sorted according to the selected discipline
i.e. FIFO by default. To avoid packet losses at this step the
length of the Qdisc may be increased to match the sum of all
socket TX queues. As some may appreciate, this change may
require only negligible amounts of memory. The Qdisc may
try to send the packets by enqueueing them into the adapter
TX queue. If the TX queue reaches a threshold (typically one
MTU below maximum) the Qdisc may be stopped and the
transmission may be paused thus avoiding losses on the TX
path of the kernel. When the TX queue drops below the
threshold the Qdisc may be restarted and new packets may
be enqueued in the TX queue of the virtual adapter 412.
Thus, the entire transmission path in the guest kernel 410 OS
may become lossless. The architecture implemented may be
based on, for example, Virtio™ technology. Hence the
virtual adapter 412 queues 475 may be shared between the
guest kernel 410 and the underlying hypervisor software 415
running in the user space of the host. The network adapter
412 may inform the hypervisor 415 when new packets are
enqueued in the TX queue of the adapter 412. The hyper-
visor software 415 may be based on, for example, Qemu.
The hypervisor 415 may be responsible for taking packets
from the TX queue 475 of the virtual adapter 412 and
copying them in the TX queue 475 of the virtual switch 420.
The packets may arrive at the virtual switch TX queue 474
of the port where the VM 401 is attached. The virtual switch
420 may take the packets from the TX queues 475 of the
input ports and may add them to the RX queues 475 of the
output ports. The switching may be done based on a for-
warding table. The forwarding table may contain the MAC
addresses of the locally connected VMs. If the destination is
found to be locally connected, the packets may be moved to
the corresponding RX queue 475. Otherwise they may be
enqueued in the RX port corresponding to the physical
interface 435. From the physical interface port the packets
may be consumed by a bridge 425 that does the encapsu-
lation step and enqueues the packet in the TX queue 475 of
the physical adapter 430. Then the lossless physical network
may take over the packet and deliver it to the destination
server RX queue. Thus, internal flow control may be
achieved making the TX path fully lossless.

On the reception side, the packets may be consumed by
the bridge 460 from the RX queue of the physical NIC and
decapsulated. The packets may be enqueued in the TX queue
475 of the virtual switch 455 that forwards them to the RX
queue 475 corresponding to the destination VM 401. The
forwarding done may be lossless. The packets may be
consumed by the hypervisor 445 that copies them into the
virtual device 442 (e.g. vNIC). The virtual device RX queue
475 may be shared between the hypervisor 445 and the guest
kernel 440. The hypervisor 445 notices the guest kernel 440
when a packet is received and the guest OS receives an
interrupt. This interrupt may be handled according to the
Linux NAPI framework. A softirq may be raised that con-
sumes the packets from the RX queue. The packet may be
transferred to the netif_receive_skb function that does the IP
routing and filtering. If the packet is found to be destined to
the local stack it is enqueued in the destination socket RX
buffer based on the port number. If the destination socket if
full the packet may be discarded. In embodiments using a
TCP socket this should not happen since TCP has end to end

US 9,485,188 B2

11

flow control that limits the amount of injected packets to the
advertised window of the receiver. In embodiments using
UDP sockets a modified Linux Kernel may be used such that
when the destination socket RX queue occupancy reaches a
threshold (e.g. one MTU below maximum) the softirq may
be canceled and the reception may be paused. Once the
process consumes data from the socket the reception may be
resumed. This ensures full lossless operation both for TCP
and UDP sockets.

The virtual switch may have one port for each VM 401
running on the server plus one additional port for the
physical interface. Each port may have an input (TX) queue
for the packets produced by the VMs 401 or received from
the physical link 435. Each port may have an output (RX)
queue for the packets to be consumed by VMs 401 or sent
out over the physical link 435. To provide a software based
switch with lossless characteristics, the switch work may be
implemented according to the pseudocode from Algorithm
1.

Algorithm 1 Lossless Switch Operation.

*Sender (Ij)
while true do
Produce packet P
if Input queue Ij full then
Sleep
else
Jj:enqueue(P)
start Forwarder(I})
end if
end while
*Receiver (Ok)
while true do
if Output queue Ok empty then
for all Input queue Ij do
start Forwarder(I})
end for
end if
if Output queue Ok empty then
Sleep
else
P Ok:dequeue()
consume packet P
end if
end while
*Forwarder (Ij)
for all packet P in input queue Ij do
find output port k
if not Output queue Ok full then
Ij:erase(P)
Ok:enqueue(P)
wake-up receiver (Ok) and sender (Ij)
end if
end for

Each sender (producer) is connected to an input queue Ij
and each receiver (producer) is connected to an output queue
Ok. After a packet is produces the sender checks if the
associated TX queue is full. If full it goes to sleep until a free
buffer becomes available else the producer enqueues the
packet in the TX queue and then starts a forwarding process
to try to push some packets from the input queue to the
output queues. The forwarder checks the output queues if
there is space available in one of them. If yes it transfers the
packets to the output queues and wakes up the correspond-
ing consumers that might be waiting for new packets. On the
receiver side the associated output queue is checked. If not
empty a packet is consumed else the forwarding process is
started to pull out some packet from the input queues to the
output queue. If some data is pulled then it is consumed else
the receiver sleeps until woken up by the sender. Observe

10

15

20

25

30

35

40

45

50

12

that the switch is designed to operate in a dual push/pull
mode. When the sender is faster than the receiver the sender
will sleep most of the time waiting for free buffers and the
receiver will wake it up only when it consumes data. On the
other hand when the receiver is faster than the sender the
receiver will sleep most of the time and the sender will wake
it up only when new data is available. The overhead of a
lossless switch is thus reduced to a minimum.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
may be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an”, and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the
invention and the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are
suited to the particular use contemplated.

What is claimed is:

1. A computer program product for controlling data traffic
in a network with a virtual switch, the computer program
product comprising a computer readable hardware storage
medium having program code embodied therewith, the
program code readable/executable by a processor to:

determine, by the processor, that a data packet is desig-

nated for queuing up in software defined buffer queues,
wherein the buffer queues are one of a first buffer queue
of a data packet producer and a second buffer queue of
a data packet consumer, at least one of the data packet

US 9,485,188 B2

13

producer or the data packet consumer is a virtual entity,
and the buffer queues are connected to both sides of the
virtual switch, between a physical input port and a
physical output port of a server on which the virtual
switch runs, and wherein the virtual switch is config-
ured to send the data packet to an external application
via a hypervisor;

determine, by the processor, whether a threshold in the
buffer queues is exceeded;

generate, by the processor, flow control commands
between the data packet producer and the data packet
consumer; and

control, by the processor, the flow of the data packet to or
from the virtual switch based on the determination of
the threshold in the buffer queues being exceeded by
issuing a start command to the data packet consumer to
start receiving data packets.

2. The computer program product of claim 1, the program
code being readable/executable by the processor to issue a
stop command to the data packet producer to stop sending
more data packets to the buffer queues in response to the
threshold in the buffer queues being exceeded.

3. The computer program product of claim 1, wherein the
buffer queues include an output buffer queue and the thresh-
old is a maximum number of data packets in the output
buffer queue.

4. The computer program product of claim 1, the program
code being readable/executable by the processor to deter-
mine by the processor, whether the threshold is no longer
exceeded, signaling room for receipt of more data packets in
the buffer queues.

5. The computer program product of claim 1, wherein the
buffer queues include an input buffer queue and the thresh-
old is a maximum number of data packets in the input buffer
queue.

6. A system, comprising:

a first switching interface, wherein the first switching
interface is configured to receive data packets from a
physical network interface card via a hypervisor;

a first software defined buffering area connected to the
first switching interface;

a second switching interface configured for virtual switch-
ing in a data network;

a second software defined buffering area connected to the
first buffering area and to the second switching inter-
face within a server on which the virtual switching
occurs; and

a processor configured to synchronize, between the first
switching interface and the second switching interface,
wherein at least one of the first switching interface or
the second switching interface is a virtual entity, an
On/Off flow control loop of flow control commands
and to control a lossless data transfer flow of data
packets between the first buffering area and the second
buffering area, based on whether a threshold in the
second buffering area is exceeded by a maximum
number of data packets by issuing a stop command to
the first buffering area to stop sending data packets.

7. The system of claim 6, wherein the first switching
interface is configured for virtual switching in the data
network.

10

15

20

25

30

35

40

45

50

55

60

14

8. The system of claim 6, wherein the first switching
interface is configured for physical switching in the data
network.
9. The system of claim 6, wherein the first buffering area
is an input buffer and the second buffering area is an output
buffer.
10. The system of claim 9, wherein the processor is
configured to stop the flow of data packets to the input buffer
in response to the maximum number of data packets in the
output buffer being exceeded.
11. The system of claim 9, wherein the processor is
configured to stop a flow of data packets to the input buffer
from the first switching interface in response to a maximum
number of data packets in the input buffer being exceeded.
12. A method of controlling data packet flow in a network
with at least one virtual switching entity, comprising:
receiving a data packet either with a source address from
the virtual switching entity or designated with a desti-
nation address to the virtual switching entity;

determining whether the data packet is designated for
queuing in a first software defined buffer queue,
wherein the first buffer queue is one of a buffer queue
of a data packet producer or another buffer queue of a
data packet consumer, and at least one of the data
packet producer or the data packet consumer is a virtual
entity;

queuing the data packet in the first buffer queue;

determining whether a threshold of the first buffer queue

has been exceeded;

determining whether a second buffer queue threshold has

been exceeded if the first buffer queue threshold has not
been exceeded;

stopping the data packet from being queued in the second

buffer queue when the second buffer queue threshold
has been exceeded;

receiving flow control commands, without packet loss or

packet drops, at either the data packet producer or the
data packet consumer; and

controlling a flow of more data packets, either with a

source address from the virtual switching entity or with
a destination address to the virtual switching entity, to
the first buffer queue if the threshold has been exceeded
by routing data packets from the source address of the
data packets to the destination address for the data
packets via at least one hypervisor.

13. The method of claim 12, including stopping more data
packets from flowing to the buffer queues if the threshold
has been exceeded.

14. The method of claim 12, including:

using a Single Rooted I/O Virtualization (SR-IOV) or

Multi-Rooted 1/O Virtualization (MR-IOV) signal to
copy the more data packets into an output buffer queue
while bypassing the virtual switching entity; and

providing flow control in the output buffer queue if a

threshold in the output buffer queue has been exceeded.

15. The method of claim 12, wherein the first buffer queue
is an output queue interfacing with either another virtual
switching entity or a virtual machine.

#* #* #* #* #*

